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ABSTRACT 

Remote-sensed hyperspectral data represents 
significant challenges in downlink due to its 
large data volumes.  This paper describes work 
developing and validating onboard processing 
of hyperspectral data products to (a) reduce 
data downlink volumes and (b) decrease 
latency to provide key data products (often by 
enabling use of lower data rate 
communications systems).  We describe 
efforts to develop onboard processing to study 
volcanoes, floods, and cryosphere, using the 
Hyperion hyperspectral imager and onboard 
processing for the Earth Observing One (EO-
1) mission as well as preliminary work 
targeting the Hyperspectral and Thermal 
Infrared Imager on the HyspIRI mission. . 
 
1. INTRODUCTION 
We describe onboard processing algorithms 
for volcano, flood, and cryosphere analysis 
deployed onboard the Earth Observing One 
(EO-1) spacecraft and applied to Hyperion 
hyperspectral data.  We also describe ongoing 
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work to develop oceanographic applications 
for EO-1 as well as follow-on work targeting 
onboard processing for the HyspIRI mission.  
In each of these cases we describe the science 
processing steps as well as the runtime 
benchmarks for a range of flight processors.   
 The motivation for onboard processing is 
multifold.  First, many space missions are 
downlink limited.  Onboard processing can 
dramatically reduce the amount of data that 
needs to be returned.  Second, onboard 
processing can enable more rapid data 
production.  By processing the data onboard 
and reducing the data volume it is possible to 
downlink alerts or summary products via 
lower data rate engineering downlink – 
resulting in more rapid notification (an 
example of this is the Direct Broadcast system 
[Directbroadcast]).  Third, onboard processing 
can enable onboard response providing more 
rapid response to science events.  For example, 
EO-1 onboard science analysis can drive 
retasking the spacecraft - enabling response to 
science events within hours compared to 
routine ground-in-the-loop data processing and 
response of one week or rush ground response 
of several days. 
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2. THE EARTH OBSERVING ONE 
MISSION AND THE AUTONOMOUS 
SCIENCECRAFT 

EO-1 [Ungar et al. 2003] was launched in 
November 2000 into a 705-km circular orbit 
with an inclination of 98.7 degrees. This orbit 
affords global coverage, with approximate 
ground-repeat tracks every 16 days. EO-1 is a 
pointable spacecraft. Observations can be 
nadir, one path to the east or west, and two 
paths to the east or west. A target may 
therefore be imaged up to 10 times in any 16-
day period, with five day and five night 
observations. For polar targets, where orbital 
paths converge, imaging up to five paths away 
from the nadir is theoretically possible. 
 On board EO-1 are three instruments: 
the Advanced Land Imager (ALI), the LEISA 
Atmospheric Corrector (LAC) and the 
Hyperion imaging spectrometer. ASE uses 
data from the Hyperion instrument although an 
effort is underway to enable onboard access to 
ALI data. 
 The Hyperion imaging spectrometer is a 
hyperspectral imager with 220 discrete bands 
covering a wavelength range of 0.4–2.5 µm. 
This spectral range makes Hyperion an 
excellent instrument for tracking many science 
phenomena that can be distinguished with 
these spectra.  Hyperion has a spatial 
resolution of 30 m/pixel. A typical Hyperion 
observation is 7.7 km (256 pixels) wide by 
95km (3176 pixels) long.  
 The Autonomous Sciencecraft 
Experiment (ASE) [Chien et al. 2005] is flight 
software that has been the primary means of 
operating the EO-1 mission since 2004.  ASE 
has science processing, mission planning, and 
onboard execution components.  The science 
processing component enables onboard 
analysis of Hyperion imagery to develop 
smaller products for rapid downlink, downlink 
of alerts, and to drive onboard decision-
making.  The onboard mission planning 
component enables EO-1 to change future 
observations based on detected events.  The 
onboard execution component executes the 

mission plans and enables the overall system 
to be robust to run-time variances. 
 The ASE software has been operating 
the EO-1 spacecraft since 2004 and has 
successfully acquired over 20,000 images 
under software control.  Further information 
on ASE can be found at ase.jpl.nasa.gov and  
[Chien et al. 2005].  This next section of this 
paper focuses on the onboard science element 
of ASE, specifically the onboard science 
element that processes Hyperion hyperspectral 
data onboard EO-1. 
 
3. ONBOARD PROCESSING OF 

HYPERSPECTRAL HYPERION 
DATA ON EO-1 

For the period 2005-2009 the  ASE software 
performed onboard processing of three (3) 
event types: thermal detection and 
summarization to enable volcano science; 
flood classification of surface water to enable 
flood science; and snow water ice land (SWIL) 
classification to enable cryosphere science.    
The onboard science algorithm can extract 12 
selectable bands of the 220 Hyperion bands for 
a patch of 256 wide (across track) by 1024 
long (along track) pixels.  In the following 
sections we describe these hyperspectral data 
analysis algorithms in greater detail. 
 
3.1.   Thermal Classification and 

Summarization 
EO-1 is flying an onboard thermal detection 
and summarization algorithm [Davies et al. 
2006].  This algorithm uses the infra-red bands 
of the Hyperion instrument to evaluate images 
for very hot (over 400 Kelvin) signatures.  The 
thermal processing algorithms use a spectral 
gradient measure G = (2.28 µm - 1.65 
µm)/(2.28 – 1.65) as well as a number of other 
thermally sensitive bands as shown below. 
Description Measure 

H1: Hot radiance 
minimum and pixel 
not noisy 

0.625 < 1.65 µm, 
2.25 µm, & 2.28 µm 
< 750 



 

H2: Min. slope for 
trigger? 

Slope G > 0.13558 

G=1.4 for DNs 

H3/E3: No 2.28µm 
spike 

(2.28µm+1.65µm)/2<
2.25µm*1.2 

E1: Extreme radiance 
min.? 

0.625 < 1.25 µm, 
1.65 µm, & 2.28 µm 
< 750 

E2: Spectrum shape 2.28 µm  > 1.65 µm/2 

 
The onboard thermal classification algorithm 
finds all pixels matching conditions H1, H2, & 
H3 listed above and labels them as “HOT”.  
All remaining pixels that satisfy conditions E1, 
E2, and E3 are labeled as “EXTREME”.  The 
thermal algorithm downlinks a map of the hot 
and extreme pixels as well as the extracted 12 
spectral bands of the hot and extreme pixels 
(of requested).  Because the data allocation for 
the summary algorithms is limited if there are 
too many hot and extreme pixels only the first 
N will be downlinked.   Figure 1 shows sample 
thermal products.   

 
 



 

3.2.  Flood Classification 
The onboard flood classification algorithm is 
intended to enable onboard recognition of 
major flooding events [Ip et al. 2006].  
Through iterative analysis of data from test 
sites two algorithms were developed for a 
range of sediment loads.  The first of these 
flood detection algorithms uses the ratio of 
0.55 µm / 0.86 µm Hyperion data.  The second 
utilizes the ratio between the 0.99 µm / 0.86 
µm data.  One complication in utilizing the 
flood classifier is accurate estimation of cloud 
cover for masking the flood scene.  In order to 
address this issue prior to flood detection the 
images are screened for clouds using a cloud 
classifier developed by MIT Lincoln 
Laboratory [Griffin et al. 2003].  Figure 2 
shows a sequence of Hyperion flood scenes 
with the corresponding derived classification 
maps. 
 

3.3.  Cryosphere Classification 
EO-1 and ASE also demonstrated onboard 
classification of Snow, Water, Ice, and Land 
(SWIL).  A classifier was manually derived 
[Doggett et al. 2006] and later a Support 
Vector Machine (SVM) algorithms was 
automatically learned by training on expert 
labeled data.  The manual algorithm is shown 
below - Figure 3 shows the details of the 
manual algorithm, and Figure 4 shows a 
sequence of Hyperion images and derived 
classification.  The cryosphere algorithm uses 
the Normalized Snow Difference Index 
(NSDI) defined as: 
 
 NSDI =  
    (0.56µm – 1.65µm)/(0.56µm+1.65µm).   
 
Another   cryosphere classifier was developed 
using Support Vector Machine (SVM) 
learning techniques and is described in 
[Castano et al. 2006].  Support vector machine 



 

learning techniques 
automatically derive 
decision classifiers via 
mathematical analysis of 
differences between 
labelled class examples in 
input data.   
 
3.4.  Onboard 

Quicklook Processing 
Within ASE we have also 
developed a quicklook 
image product.  For this 
product an ICER [Kiely 
and Klimesh 2003] 
compression of 1 band 
from onboard science 
processing (e.g. one of the 
algorithms above) is 
compressed into a 20 
Kbyte image and 
downlinked in the 
engineering S-band 
channel.  Below figure 1B 

shows a quicklook image of the Mount Saint 
Helens Volcano taken as part of monitoring 
image sequence. 
 
4. WORK IN PROGRESS  
Ongoing work includes development of 
products for marine applications and 
benchmarking algorithms on current and 
future flight processors to understand onboard 
processing options for future missions. 
 
4.1.  Marine Applications 
Ongoing work includes development of rapid 
products for a range of marine applications.  
Ground-based processing of marine data for an 
October 2008 experiment in Monterey Bay 
[Chien et al. 2009] included acquisition of 
Hyperion data and delivery of with two 
derivative science products Fluorescence Line 
Height (FLH) and Maximum Chlorophyll 
Index (MCI) linear baseline data products 
[Gower and Borstad 2004, Gower et al. 2005].   



 

For Hyperion data the FLH and MCI 
measures were adapted from MODIS 
definitions:  

 
FLH = (681µm – 660µm)  

– 0.4 * (711µm – 660 µm) and  
MCI = (711µm – 681µm)  

– 0.422 * (752 µm – 660 µm).   
 

Figure 5 shows a sample MCI product 
produced as part of the October 2008 
deployment.  Development of FLH and MCI 
products onboard would enable more rapid 
dissemination of science results for quick 
response activities (such as issuing alerts or 
deployment of sensors for further 
acquisitions). 

 
4.2.  Onboard Processing for Hyspiri 
 The HyspIRI mission [Green et al. 2008] is a 
future mission under study by NASA with a 
visible/hyperspectral (380 nm to 2500 nm, 
60m/pixel, 144km swath) and thermal infra-
red imaging capability (400nm, 7 bands 

between 7500 
and 1200 nm, 

60m/pixel, 
600km swath).  

 NASA 
is studying an 
option of use of 
a hybrid direct 

broadcast 
capability to 
enable rapid 
delivery of 

science 
products.  

Direct 
broadcast 

[Direct Broadcast] transmits instrument data 
for downlink as it is being acquired so that 
regional ground stations can receive it in near 
real time for rapid development of science 
products.  However the amount of data 
collected by Hyspiri (1 Gbit per second) 
exceeds the direct broadcast downlink capacity 

(15 Mbits per second) by approximately 65x.  
As a result, NASA is studying options to 
perform onboard processing to develop 
science products onboard for downlink as the 
science products are much smaller in size than 
the complete raw data.  While the entire 
acquired dataset will still be downlinked using 
polar ground stations (e.g. not in near real 
time) the direct broadcast product will be 
available with much shorter latency (within 
hours from acquisition).  An additional 
problem is that without global direct broadcast 
coverage (such as over ocean areas) the near 
real-time data capability is lost.  In order to 
avoid this problem high priority data can be 
stored onboard and repeated in the direct 
broadcast channel to guarantee its receipt at a 
direct broadcast station (at an increased 
downlink cost from repetition). 
 As part of this effort, a range of science 
algorithms using visible, hyperspectral (vnir 
and swir), and thermal infra-red are being 
studied for onboard product generation.  
Directly applicable are many algorithms 
derived for use with current multispectral and 
hyperspectral instruments such as MODIS, 
ASTER, ALI, and Hyperion (see Table 
below). 
Instrument Spectral 

Resolution 
Spatial 
Resolution 

Instrument 
Swath 

MODIS 
(Terra, 
Aqua) 

36 bands 
405nm-
14300 nm 

250-
1000m 

2700 km 

ASTER 
(Terra) 

14 bands 
520nm-
11650nm 

30m 60km 

ALI,  
(EO-1) 

8 bands 
400-2500 
nm 

30m 28km 

Hyperion 
(EO-1) 

8 bands 
400-2500 
nm 

30m 7km 

VSWIR, 
(Hyspiri) 

212 bands 
380-
2500nm 

60m 150km 

TIR 
(Hyspiri) 

8 bands 
400nm 
8000-
12000 nm 

60m 600km 



 

 
Volcano Monitoring – Volcanic activity 

can be monitored via analysis of the thermal 
signature as already demonstrated on EO-1.  In 
these cases detection of a significant thermal 
signature would trigger sending down any 
available VSWIR (if covered) else all TIR 
bands.  Hyspiri TIR bands also facilitate 
tracking of Ash and SO2 plumes that requires 
sensitivity in the TIR range of 8-10 microns. 

Surface water coverage – Flooding can be 
tracked using VSWIR and TIR instruments.  In 
addition to the algorithms described above 
there are several MODIS-based algorithms 
[Sohlberg, Brackenridge] being evaluated. 

Cryospheric change – The SWIL algorithm 
described earlier as well as adaptations of 
MODIS products for snow coverage [MODIS 
Sea Ice].  Of particular interest within the 
cryosphere discipline are rapid response Arctic 
sea ice products to be used for maritime 
applications.  

Vegetation – another area of interest is 
tracking of vegetation and plant health using 
hyperspectral imagery.  These use measures 
such as the Normalized Difference Vegetation 
Index (NDVI), NGDVI, canopy foliar indices, 
and other related indices.  These products use 
spectral information in the 550-1640 nm 
range. 

Dust storm tracking – large-scale dust 
storms [Miller 2003] have also been detected 
using MODIS and therefore are good 
candidates for Hyspiri VSWIR and TIR 
products. 

Oceanographic applications – in addition 
to the ocean biology applications described 
above we are also assessing possible Sea 
Surface Temperature (SST) products using the 
TIR instrument.  Prior work has derived SST 
products from MODIS data [MODIS SST].   

In addition to application of the above 
algorithms we are investigating the use of 
support vector machine learning techniques to 
consolidate processing for correction and 
classification/product generation.  In this 
approach data is corrected and conventional 
classifications are generated.  These are used 

as labels to a supervised learning algorithms 
that is trained on uncorrected data.  This 
transfer learning method automatically derives 
processing that does not rely on corrected data, 
removing the need for onboard correction.  
Can use SVM regression methods for indices 
(e.g. not classes). 

These studies include testing the above 
algorithms on a range of flight processors 
including the Mongoose M5 (currently flying 
on EO-1), Atmel (100MHz), Rad 750 
(200MHz), as well as more powerful FPGA 
based Opera, SpaceCube, and Isaac platforms 
which offer up to 50 GFlops performance.  
Currently onboard EO-1 running on the M5 
processor, the thermal algorithm takes 5 
minutes, cloud takes 5-10, SWIL 40-50 
minutes, and flood 30-40 minutes onboard 
EO-1 running on the M5 (with onboard 
science processing getting ~ 40% of the CPU 
due to other FSW).  In comparison Hyspri is 
expected to produce approximately 1Gbps raw 
instrument data and requires approximately 
300K pixels processed each second for 
VSWIR and 1.2M pixels processed each 
second for TIR in order to keep up with data 
production. 
 
5. RELATED WORK AND 

CONCLUSIONS  
Other work has studied the use of Support 
Vector Machine (SVM) learning techniques to 
onboard detection of active sulfur springs 
[Mandrake et al, 2009].  This work includes 
analysis of linear, polynomial, and gaussian 
kernel SVM’s to detection of sulfur in 
Hyperion images – a very challenging task due 
to the slight sulfur signature (sub pixel) and 
limited onboard computing on EO-1.  Onboard 
data analysis algorithms have also been 
developed for the THEMIS instrument 
onboard Mars Odyssey [Castano et al. 2007] 
but as of yet have not been integrated with the 
flight software or uploaded and used.  The 
Mars Exploration Rovers now have the ability 
to analyze onboard imagery to detect dust 
devils and clouds [Castano et al. 2008, Chien 



 

et al. 2008] and a further upload is under way 
to enable autonomous targeting of remote 
science instruments onboard MER [Estlin et 
al. 2009]. 

We have described a number of 
algorithms intended for classification of 
hyperspectral images onboard spacecraft.  The 
thermal event detection and summarization, 
surface water/flood detection, and 
snow/water/ice/land cryosphere tracking have 
been operational onboard the EO-1 spacecraft 
processing Hyperion data since 2004.  We then 
described ongoing work towards onboard 
algorithms including marine science products.  
Onboard production of these science products 
enables: (1) more rapid delivery of science 
products and (2) more rapid response to 
acquire further imagery, issue alerts, or other 
actions. 
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